Density of rational points on Enriques surfaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density of Rational Points on Diagonal Quartic Surfaces

Let a, b, c, d be nonzero rational numbers whose product is a square, and let V be the diagonal quartic surface in P defined by ax + by + cz + dw = 0. We prove that if V contains a rational point that does not lie on any of the 48 lines on V or on any of the coordinate planes, then the set of rational points on V is dense in both the Zariski topology and the real analytic

متن کامل

The Density of Rational Points on Curves and Surfaces

Let n ≥ 3 be an integer and let F (x) = F (x1, . . . , xn) ∈ Z[x1, . . . , xn] be an absolutely irreducible form of degree d, producing a hypersurface of dimension n − 2 in Pn−1. This paper is primarily concerned with the number of rational points on this hypersurface, of height at most B, say. In order to describe such points we choose representatives x = (x1, . . . , xn) ∈ Z with the xi not a...

متن کامل

Rational Points on Cubic Surfaces

Let k be an algebraic number eld and F (x0; x1; x2; x3) a non{singular cubic form with coeecients in k. Suppose that the pro-jective cubic k{surface X P 3 k given by F = 0 contains three coplanar lines deened over k, and let U (k) be the set of k{points on X which does not lie on any line on X. We show that the number of points in U (k), with height at most B, is OF;"(B 4=3+") for any " > 0.

متن کامل

Rational Points on Elliptic Surfaces

x.1. Elliptic Surfaces Deenition. An elliptic surface consists of a smooth (projective) surface E, a smooth (projective) curve C, and a morphism : E ?! C such that almost all bers E t = ?1 (t) are (smooth projective) curves of genus 1. In addition, we will generally assume that our elliptic surfaces come equipped with an identity section 0 : C ?! E which serves as the identity element of the gr...

متن کامل

Rational Points on Primary Burniat Surfaces

We study the arithmetic of so-called primary Burniat surfaces, a family of surfaces of general type arising as smooth bidouble covers of a del Pezzo surface of degree 6 and at the same time as étale quotients of certain hypersurfaces in a product of three elliptic curves. We give a new explicit description of their moduli space and determine their possible automorphism groups. We also give an e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 1998

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.1998.v5.n5.a6